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Paparella: Volume I: Basic Sciences and Related Principles

Section 2: Physiology

Part 1: Ear

Chapter 5: Physics of Sound

Juergen Tonndorf

The following account is written for people whose background is not in physics and who,
therefore, have little if any training in mathematics. Mathematics will be used with respect to
only one point (impedance), but it will be very elementary, not going beyond simple calculus.
Those desiring a more formal treatment are referred to other textbooks, such as are listed in the
bibliography.

Sound is a form of physical energy. The ear and the larynx are mechanical devices
(receiver of sound and generator, respectively); in this respect they must both obey the
appropriate laws of physics, i.e., ofacoustics,as the particular subfield is called that deals with
sound.

A good cause can be made for the fact that the larynx operates like certain types of wind
instruments. However, to simply compare the action of the ear to that of a microphone is quite
misleading. Microphones are so designed that they only measure, but do not disturb, an existing
sound field, and especially so that they do not draw acoustic power from it. In contrast, the ear
does consume acoustic power, although admittedly in quite small quantities.

It has been customary for a long time to describe sound in terms of tones (or mixtures
of such) of very long durations, mainly because of certain powerful mathematical descriptions
that can be applied to such cases. However, sounds in our everyday experience are usually not
of the latter type. More typically, they are short, of the order of 0.1 sec, and often much shorter;
for example, speech sounds in running speech. Therefore, we must also consider short-lasting,
so-calledtransient,sounds. In counterdistinction, the long-duration sounds are then referred to
assteady-stateevents.

It may be noted in this connection that the information-carrying capacity of steady-state
sounds is essentially nil. It takes sound signals that change rapidly with time and have little
predictability to transmit information.

The Decibel (dB)

Before entering the discussion of acoustics proper, we must define thedecibel (dB),a
measure that has found widespread acceptance not only in acoustics but also in electrical
engineering, optics, and many other fields. As will be pointed out in detail later, sound signals
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may vary in intensity from low to high, corresponding to variations in loudness from soft to loud.
Intensity is a physical measure and is defined as the average rate of energy flow through a unit
area (1 cm2) at a given point in a specified direction. Its unit is the watt/cm2. Since power =
energy per sec, it may also be considered a measure of "power density".

In acoustics, one is frequently interested in mere relative changes, ie, how much more
intense one given sound is compared with another. Moreover, more often than not, effects such
as the attenuation afforded by a wall are independent of the actual level. Note that the term
"level" refers to absolute power values in watts/cm2, but expressed in dB; there are also energy
levels, sound pressure levels, and so forth. Typically, such a wall may attenuate sound to one-
tenth its original value. If the original value is Lo and the attenuated one La, we may have

Lo 10, 100, 1000 ...
La 1 10 100 ... . . . . . . . . . . . . . . . . . . . . . . . . . (I)

In all three cases, the result is aratio of 10.We can rewrite the values of L as

Lo 101 102 103 ...
La 100 101 103 ... (II)

We see then that the ratio, being 101, can be conveniently expressed by its exponent, 1
in the present example. These exponents, as is well known, arelogarithms to the base of ten.
This is the basis of the decibel notation, which also contains a scaling factor of 10:

NdB = 10 log (I'/I") (1)

The result is a number (N), since the ratio between two values (I-intensity) that have the
same dimension (eg watts/cm2) is dimensionless.

In actual practice, sound is more conveniently measured in terms of pressure than in terms
of intensity. Sound pressure (p) is given as dyne/cm2 (ie force per area), and is related to sound
intensity (I) as in

p2 = I (2)

Therefore,

NdB = 10 log (p'/p")2 = 20 log (p'/p") (3)

Hence, a ratio of 10 in terms of intensity equals 10 dB, whereas the same ratio in terms
of sound pressure equals 20 dB; doubling an intensity value means an increment of 3 dB,
whereas doubling a pressure value means an increment of 6 dB. The 5-dB step of a clinical
audiometer is thus seen to represent almost a doubling of the sound pressure value. The short
table (III) gives a few representative values.
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dB 10 20 30 40

Sound intensity ratios 10 100 1000 10,000
Sound pressure ratios 3,162 10 31.62 100

(III)

The acceptance of the decibel was aided by another fact. Communication engineers had
found quite early that the range of intensities between the hearing threshold (the level at which
one barely hears a sound) and those sounds painful to the ear is quite large. In the middle
frequency range (1000 Hz to 3000 Hz), in which a normal ear is most sensitive, this range is
close to 1:10.000.000. Moreover, it was commonly believed until recently that the response of
the ears varies as a logarithm of the signal magnitude, the so-calledWeber-Fechner law.We
know now that this law is only an approximation, and that the responses of all senses vary as
power functions of signal magnitude whereby the exponent of such functions is a characteristic
of each particular sense - the power law of Stevens and of Plateau. Engineers had already found
it convenient at the time when radios were first introduced to use volume controls that were
logarithmically rather than linearly tapered. Such controls are nothing but variable resistors. In
this manner the user has the impression that he is actually controlling "loudness" in a linear
manner.

If one wishes to express the results of a given measurement (of a noise level, for example)
in absolute terms but still use the dB, one simply has to form the dB ratio between the power
(or sound pressure) level in watts/cm2 or dynes/cm2, respectively, to a givenstandard reference
level. For many years, the values of these reference levels have been set at 10-10 watts/cm2 or
0.0002 dyne/cm2, respectively. The arbitrariness of such reference levels is reflected by the fact
that in underwater acoustics a level of 1 dyne/cm2 is used as a reference. Still other values are
used in audiometry, where the zero reference level is determined as a sort of an average threshold
for healthy young ears. It varies with frequency to account for the frequency dependence of
human hearing. The 1951-ASA (American Standards Association, now ANSI (American National
Standards Institute)) levels have in 1969 been replaced by the 1964 ISO (International Standards
Organization) levels, which differ slightly, but consistently, from the former.

Simple Harmonic Motion

Sound is usually produced by structures that are set into vibration by mechanical,
electromagnetic, or a host of other means.

The simplest sustained tone that can be produced - for example, by a tuning fork - is
based upon very uniform, pendulum-like motions of its tines. If we plot such to-and-fro motions
against time, we obtain atime course,a sections of which is shown in Figure 1. This is called
a simple harmonic motion(for a reason that will become obvious presently) or, because of its
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derivation fromsine(or cosine) functions, asinusoidal waveform.In a true sinusoidal wave, the
time duration of one cycle, theperiod,is rigidly maintained. One cycle may be counted from any
given starting point until the waveform has returned to the same point having the same tendency
of motion. For example, starting at the zero line on the left of Figure 1, the trace goes upward
to the positive maximum, downward again to zero, passes the negative maximum, and returns
to zero. Such count could be started at any other point. The numbers of cycles per second is a
measure of the frequency (unit: Hertz (Hz)). The closest psychophysical equivalent to frequency
is pitch.

The excursions of the tracing from zero in either direction represent thedisplacementsof
the vibrating structure from its resting position. The height is called amplitude. Starting from the
zero line at any point in time, this may be theinstantaneousamplitude, and it may be either
positive or negative; at the point of maximum displacement it is known as thepeakamplitude;
that from a positive peak to a negative one, thepeak-to-peakamplitude.

One another important measure is the so-calledroot-mean square(RMS) amplitude. It
represents a statistical average and is registered by many measuring instruments. For sinusoidal
events, it is equal to the peak amplitude divided by sq root of 2, ie approximately to 0.707 times
the value of the peak amplitude. The importance of RMS values lies inpowerconsiderations. A
unidirectional (DC) current of electricity passing through a wire dissipates energy in the form of
heat. It is clear that an alternating (AC) current that changes direction, reducing even to zero at
regular intervals (like the tracing in Fig. 1), heats the wire to a lesser extent. The RMS value the
designates the magnitude of a DC current that has the same heating capacity as an AC current
of a given peak value. Since power considerations are principally alike in electrical, mechanical,
and other physical processes, the RMS concept has universal validity. The nearest psychophysical
equivalent to the displacement amplitude of a sound generator (at least for a given frequency)
is loudness.

Superposition of Sine-Wave Events

A given structure may be subjected to more than one sinusoidal event at the same time.
Obviously, the structure cannot execute two different vibrations at the same time, but will follow
their resultant from instant to instant. We will limit consideration to two such events applied
simultaneously and will start out with a special case in which both are of the same frequency.

Phase.In order to determine the resultant, we must know in what part of its cycle one
event happens to be with respect to the other. Because of their derivation from sine functions (see
previous discussion), the tracing of a full "cycle" may be said to represent the circumference of
a circle with a radius equal to the peak amplitude. Thus, each point along the cycle, or its
projection upon the time axis, may be expressed in terms of an angle between zero and 360
degrees, starting at any point - a zero-crossing, for example. Such an angle, which then
determines uniquely the relative state of the vibratory event, is called aphase angle.Since the
circumference of a circle may also be expressed inradians,one can also employ multiples or
fractions of pi to quantify a phase angle (2 pi radians - 260°).
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Figure 2 gives two pairs of events that have different phase relationships. It is seen that
for either pair the phase relation determined at any point in time holds for any other point. This
arises from the fact that we had assumed that both events have the same frequency. In such a
case it takes exactly the same time for either event to complete one cycle or any fraction thereof.
In Figure 2(a), the phase relation is 90 degrees (1/2 pi, with event Bleadingevent A, or event
A lagging behind event B. In Figure 2(b), the phase relation is exactly 180 degrees (1 pi); lead
or lag cannot be determined in this case. The latter situation is often referred to asphase
opposition.If there is no phase difference, the events are said to bein phase(0° phase angle).

Once the phase angle is determined, the resultant waveform of the two events can be
determined by adding their instantaneous amplitudes, so-calledlinear superposition,with proper
regard to their signs in the manner of Figure 3. Of special interest are cases a and b. In both of
them, amplitudes of the primary events are equal. When the phase angle is 0 degrees (case a),
the resultant R has twice the amplitude of each single event since amplitude is simply doubled
at all times (reinforcement). When the phase angle is 180 degrees (case b), the resultant R is a
straight line, amplitudes of the primary events being equal and of opposite signs at all times
(cancellation). In all other cases (for example, case c), that is, when phase angles are neither 0
degrees nor 180 degrees or when amplitudes of the primaries are not equal to each other, there
is partial reinforcement or partial cancellation. For the case of equal amplitude of the primary
signals, the limiting phase angle is 120 degrees. If the latter is smaller than this value, there is
partial reinforcement; if it is larger, there is partial cancellation.

It is noted that all resultants, with the exception of the case of complete cancellation, are
also sine waves having the same frequency as the primary events.

Beats. If we now allow the two events to have different frequencies, although such
differences should be small (500 Hz and 510 Hz, for example), an interesting phenomenon
develops. In contrast to the cases just discussed, the phase relation between the two events does
not stay put, but alters continuously. Inspection of Figure 4C indicates that whenever a period
of time elapses that is the reciprocal of the difference of the two signal frequencies (10 Hz =
1/0.1 sec in the present example) a given phase relation will repeat itself, only to change once
more at the next instant. The superposition of two such events must lead to a waveform such as
given in Figure 4 D. Its amplitude no longer stays uniform; it fluctuates in a sinusoidal manner
at a rate once more equal to the difference between the signal frequencies. Furthermore, as can
be seen from Figure 4, the waveform of the resultant has a period different from that of either
of the two signal frequencies. It is equivalent to their average (1/2(500 + 510) = 505 Hz in the
present example).

When the amplitudes of the two primaries are equal, there is one instant of complete
cancellation followed by a later one at which amplitude is exactly twice that of each primary (see
Fig. 4 D). This had to be expected from the results of Figure 3, that is, from the principle of
linear superposition. Since beats are heard especially well under this latter condition, they are
known as "best beats". When the amplitudes of the primaries are not equal, neither cancellations
nor reinforcements are complete. Moreover there are slight variations of frequency in addition
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to those of amplitude. However, the resultant beats sound less distinct to the ear.

The example of Figure 4 concerned two primaries that were only slightly apart in
frequency. Musicians who tune their instruments while listening to the disappearance of beats call
this type animperfect unison.Physicians refer to them as simple beats.

Beats may also appear between primaries that are not quite inharmonic relationship
(discussed later), that is, when their frequency ratio is not quite an integral number such as 1:2,
1:3, 2:3, and so on. For example, the combination of 500 Hz and 1010 Hz leads also to a 10 Hz
beat. The correct harmonic relationship would be 500 Hz and 100 Hz (1:2). This is then known
either as amistuned consonanceor as complex beatsin musical or physical terminology,
respectively.

Complex Harmonic Motion. Finally, we must examine the waveforms resulting from
superposition of events having frequencies that are related to one another by exact integral
numbers, eg 500 Hz and 1000 Hz (1:2); 500 Hz and 1500 Hz (1:3); 500 Hz and 750 Hz (2:3);
750 Hz and 1000 Hz (3:4); and so on. Beats, obviously, cannot occur in such cases. Although
in the case of 1:2 relationship, for example, one primary waveform completes two cycles at the
same time the other one completes only one, this relationship is strictly maintained at all times,
and there is no gradual shift in phase. Figure 5 shows the waveform resulting from such a
combination for two different phase relationships between the primaries. In contrast to the simple
sinusoidal waveform of Figure 1, those of Figure 5 are known ascomplexwaveforms. To be
sure, Figure 5 still appears relatively "simple", but when several frequencies are superpositioned,
the resultant waveform will soon become quite complex, especially since its shape depends not
only upon the number of components but also upon their relative strengths and their phase
relationships (Figs. 5 and 6).

In music, such whole number relationships play a special role. For example, the 1:2 ratio
represents an octave, the 2:3 ratio a fifth, the 3:4 ratio a fourth, and so forth. For this reason, the
term harmonic relationshiphas been in use for a long time. In a given harmonic series, one
refers to the lowest common divisor (eg 100 Hz of the series, 100, 200, 300, 400, ... Hz) as the
fundamentalor thefirst partial. The 200 Hz component would be the first overtone or the second
partial, and so forth. The terms "fundamental" and "overtones" are most commonly used in
musical terminology, whereas "partials" is employed more commonly in physical terminology.
The term "basic frequency" is occasionally employed for the first partial. We realize now that
the relationship between beating primaries is aninharmonic one.

Fourier Analysis. Actually, the synthesisof complex waveforms as described in the
foregoing has become possible only relatively recently after suitable devices had become
available. The knowledge that complex waveforms show aperiodicity, that is, the periodic
repetition of a characteristic waveform, however complex, is somewhat older. This important
discovery is credited to the French mathematician Fourier.Fourier analysis is a powerful
mathematical tool and is used today in many different fields, not only in acoustics. Fourier first
described his theorem for the problem of heat transfer in 1811. Its application to acoustics, and
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particularly to the performance of the ear, was first suggested by G. S. Ohm in 1843. This is
known asOhm's law of acoustics,in contrast to his better knownelectrical law.

The point must be stressed that for any given waveform there is only one solution in
terms of the contained frequencies and their amplitude and phase relationships. It is then possible
to record this information in the form of aspectrum,ie relative amplitude versus frequency
(including phase information). In such a plot, each frequency appears as a line of a given height.
For an example, see Fig. 6. All complex sounds, including inharmonic sounds, havediscrete line
spectra. It is a curious fact, however, that as one gains information about the frequency
composition of a given complex sound one loses sight of its waveform. There is no denying that
by experience one learns to some degree to associate some waveforms of lesser complexity with
their spectra, but that is anacquiredfaculty not one that is inherent.

Either notation, waveform or spectrum, is complete and unique. When information is
being stored for future playback (phonograph records, recording tape) it is more convenient to
record waveforms. For purposes of analyzing the performance (potential or real) of
electroacoustics systems, Fourier transformation is an indispensable and powerful tool. Ohm, as
just mentioned, had postulated that the ear performs a Fourier analysis on incoming sound. This
hypothesis was based upon the observation that the ear can differentiate complex tones to some
degree, a faculty that can be improved by training. Moreover, the ear distinguishes musical
instruments and voices partly by recognizing their characteristictimbre or quality. The word
"timbre" is used in musical terminology and the word "quality" in physical terminology.
Instruments do not produce pure tones (ie simple sinusoidal sounds); their timbre depends upon
the number and distribution of the higher harmonics they invariably contain. This is so not only
for given types of instruments, but also for instruments of the same kind, making it possible, for
example, to distinguish high-quality violins from those of lesser quality. The same difference in
timbre applies to human voices, ie to typical sopranos, altos, tenors, and basses.

Generation of Sinusoidal Vibrations

We may now raise the question of the factors that let a tuning fork or a similar instrument
execute its vibrations. As everyone knows, one has only to strike a tuning fork once in order to
activate it. It will then vibrate for quite a while, say 1 to 2 minutes, at slowly diminishing
amplitudes. The latter point will be ignored for the time being.

Events in mechanical systems are governed by their physical properties and by forces that
are either external or inherent. When the tines of a tuning fork have been displaced by an
external force (eg after having been struck by a rubber mallet), a force is evoked that tends to
restore the fork to its previous equilibrial state. In most instances, suchrestoring forcesare given
by theelasticproperties of the material, their magnitude being governed by Hooke's law, ie that
the resultant stress equals the strain. This law holds only for relatively small displacements.
Beyond certain limits, things get more complicated, as we will see later. Under the effect of the
elastic, restoring force, the tines return to their resting position. However, in doing so they
acquire velocity. Because of their inherent mass, this means an increase in theirmomentum(mass
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x velocity = momentum). The momentum is highest, but the restoring force lowest, just when
the tines reach their resting position. Therefore, the movement is carried right through that point,
initiating a displacement of opposite sign. In turn, the growing displacement evokes a restoring
force, also of opposite sign, slowing down the motion that eventually, at some maximal
amplitude, comes to a standstill. Now the elastic force takes over, tending again to bring the tines
back to their equilibrial position. Once more the momentum increases and the whole event
repeats itself, only running in the opposite direction.

It is clear then that the vibration is maintained by alternate effects of the elastic restoring
force and the momentum. If the event is sinusoidal, both vary sinusoidally with time. The elastic
force reaches it maximum at the point of maximal displacement, and its minimum (it actually
becomes zero) in the resting position. The momentum, on the other hand, is zero at the point of
reversal, that is, the position of maximal displacement, and maximal when the tines pass through
their resting position. Inspection of Figure 7 indicates that such a condition is fulfilled when and
only when the phase relationship between the displacement or the restoring force on the one hand
and the velocity or the momentum on the other is 90 degrees, with the velocity leading the
displacement.

The rate of velocity is not uniform. In other words, acceleration and deceleration alternate
with each other. Both are highest when the tines come to their standstill at the point of maximal
displacement and then begin again in the opposite direction. This means that displacement and
acceleration reach their respective maxima at the same time but are in phase opposition. The
phase relationship between the displacement, the velocity, and the acceleration of a sinusoidal
vibratory event is depicted in Figure 7. It may be mentioned here that all three entities have
"amplitudes". Thus, to avoid confusion one should always specify an amplitude of displacement,
or of velocity, or of acceleration.

Tuning forks are known to maintain their frequency very precisely. In fact, some modern
chronometers employ small tuning forks as time-keeping devices. Thus, the frequency is a built-
in feature of these forks; it is known as theirnatural frequency. The latter does not depend upon
the amplitude of vibration or the force with which the tuning fork is struck. It depends upon (1)
the elastic coefficient of the material (the stiffer, the higher the natural frequency) and (2) its
mass (the heavier, the lower the natural frequency). Obviously, then, the natural frequency is
related to the two factors that maintain the vibrations, the elastic restoring force, and the inertia
(f0 = natural frequency; E = elasticity; M = mass):

f0 = (1/2 pi) sq root ((E/M). (4)

Instruments like tuning forks start their vibrations very easily, "resonating" with another
nearby fork of the same frequency. Therefore, their natural frequency is also known as the
resonance frequency.

Damping. Earlier in this chapter we disregarded the fact that tuning forks do not actually
maintain their vibratory amplitude but show a gradual decrement with time. This decrement
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results from the effect offriction, both external (eg air resistance) and internal (eg friction within
the crystal lattice of the material). Any form of movement, one directional (DC) or alternating
(AC), is opposed by friction, its magnitude being proportional to the velocity of such movement.
Thus, it leads the displacement by 90 degrees in phase (Fig. 7). Its effect on vibratory events is
known asdamping.

Since the velocity of sinusoidal vibrations is always in some proportion to their
displacement amplitude (see previous discussion), it is clear that the absolute magnitude of the
effect of damping decreases proportionally as the displacement amplitude is diminished.
Expressed differently, in a given event the effect of damping is always at a fixed ratio to the
displacement amplitude. It is only at the start or at the end of such an event that it becomes
appreciably higher as a result of the effect ofstatic friction. This fact will make the assessment
of damping a relatively simply task. All one has to do is to measure the amplitude ratio of any
two successive periods. This ratio is called thedecrementand defines damping uniquely. In
practice, the logarithmic decrement is usually used, that is, the natural logarithm of the above
ratio. The higher the damping, the less the number of cycles a vibratory event goes through
before coming to a complete stop. Figure 8 shows the effect of such variations in damping. It
covers a range of slightly more than one order of magnitude.

It is evident that the damping of tuning fork is very much less than that of any of the
examples shown as its decrement is much slower. The value of delta = 6.8 is of special interest.
It is exactly at this damping value that a structure, after having been displaced, is unable to
execute even a single vibratory cycle. Instead, it is returning asymptotically to its resting position.
This damping value is known ascritical damping.If damping is even higher (overdamping), the
return to the resting position is executed in a creeping manner, making its duration longer than
that of a half cycle of the corresponding vibratory event. This retarding effect of damping makes
itself already felt at a level below critical damping. It is for that reason that the natural frequency
of a given system goes slightly with increased damping as we shall see later (see Fig. 10).

Free Vibrations, Maintained Vibrations, Forced Vibrations. As was just mentioned,
tuning forks struck once vibrate for a long time. Thus, by definition, their damping must be very
low. Since they receive but on initial impulse and none thereafter, their vibrations are an example
of so-calledfree vibrations.The latter, as we know from the example of tuning forks, occur
always at the natural frequency of the system in question. There are ways of driving tuning forks
continuously, for example, by having one tine of a steel fork act as the arm of an electromagnetic
interrupter. Forks of this or of similar construction were used extensively as generators of steady
tones before the advent of electronic instruments, since they can be made to maintain their
amplitude at any desired level. Such vibrations are known asmaintained vibrations.Finally, an
earphone or a loudspeaker can be driven at many different frequencies, not only at their natural
frequencies. Otherwise, they could not reproduce speech signals or music, both of which change
rapidly in frequency with time. Such vibrations are known asforced vibrations.When the driving
force is withdrawn, there is usually a very brief period of free vibrations before the system comes
to rest.
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Laryngeal Voice Production.One generator that is of special interest to otolaryngologists
is the larynx. Simultaneously, it may serve as an example of how vibrations are generated by a
unidirectional force. During expiration, when voice production usually takes place, the air current
flowing through the organ is unidirectional, but the vocal cords vibrate in an alternating mode.
The underlying process is as follows: The laryngeal muscles must first position the vocal cords,
preferably in the midline position, and put them under proper longitudinal tension. This tension
provides the "tuning" of the cords. A chest contraction now increases the air pressure in the
subglottic space. This pressure, finally, overcomes the muscular opposition and forces the glottic
chink open. At this moment, an air current gets under way and the subglottic pressure decreases
accordingly. Owing to the latter change, the vocal cords approximate each other once more. This
latter event is aided by the fact that an air current flowing through a narrow channel (where
current velocity and channel width are reciprocally related) exerts a negative pressure upon the
channel walls, sucking them into the channel (the so-called Bernoulli effect). After the glottis is
closed once more, the subglottic pressure rises again, and the next cycle is started. The restoring
force in this case is given partially by muscular tension and partially by the Bernoulli effect. The
momentum is that of the moving air. Both factors are again seen to be 90 degrees out of phase
with each other. Varying the muscular tension of the vocal cords varies the frequency produced.

Actually, it is not necessary that the vocal cords be tightly approximated. Even when the
glottis is open but the vocal cords are tensed and the rate of the expiratory air current is
increased, the vocal cords are set into motion by the air current flowing through the glottic chink.
This is another application of the Bernoulli effect leading once more to an oscillatory motion.
In this latter case, a voiceless "whispered" sound is produced, whereas the output in the first case
if of the voiced type.

The resultant waveform of the vocal cords in either case is not sinusoidal, although for
a voiced output it is periodic when sustained sounds are produced. In the first case (closed glottis
= voiced output), there are brief pulses corresponding to the opening phases separated from
another by longer lasting quiescent intervals corresponding to glottic closure.

It is clear then from waveform considerations that the output of the larynx is not a pure
tone but a complex tone. In the case of an unvoiced output it is essentially a noise, which we will
define later. We have yet to describe the role of the respiratory tract in voice production (see the
section on filtering of sound later in this chapter).

It may be noted that the present brief account of laryngeal voice production follows the
so-calledaerodynamicconcept. The so-calledneuromuscular theorythat was in vogue briefly in
the early 1950s is untenable from the acoustic standpoint. The aerodynamic function of the larynx
has great similarity to the working mechanism of brass musical instruments - bugles, trumpets,
and the like. The role of the vocal cord is then played by the lips of the player.

Another way of converting a DC motion into AC vibrations is shown by the action of a
bow upon a violin string. The horsehair of the bow is covered with resin to make it sticky. When
the bow is drawn over the strings with some force, the friction resulting from the sticky resin will
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take the string along for a short distance. After a while the elastic restoring force must overcome
the driving force and the string returns fast to its resting position and usually beyond it. The
resulting waveform is of the so-calledsawtoothtype, that is, the first slope (that corresponding
to the forced motion) is more gradual than the second one (that corresponding to the return
motion). Thus, in this case the output is not sinusoidal. In general, generators of this kind are
known asrelaxation oscillators.

Acoustic Transients

With the exception of the larynx in its unvoiced mode, all generators described so far
produce simple harmonic motions or complex harmonic motions. The latter, as we know, are
nothing but combinations of sine waves according to the theorem of Fourier. However, as was
stated in the introduction, long-lasting vibrations (a basic requirement of true sine-wave motions
and their analysis by Fourier series) are not the rule in the production of sound. More typically,
sounds are short lasting. Consider, for example, all plosive speech sounds. Even the voiced
consonants and the vowels of running speech are not really "long lasting".

We have seen that a generator that has very little damping, a tuning fork, for example,
will execute free vibrations for a long time after a stimulating force is withdrawn. It is evident,
then, that short-lasting sounds can be produced only by generators that have high damping. If one
taps the diaphragm of a good quality loudspeaker, ie one that is well damped, one hears a short
"plop". Although the output of a smaller speaker activated the same way sounds somewhat higher
in pitch (such sounds are generally referred to as "clicks"), it is hard, and practically impossible,
to assign real pitch values to such short-lasting sounds, ordering them along a musical scale, for
example. Their character is not that of a tone but rather of a short-lastingnoise.

Fourier Analysis. When forming the Fourier spectrum of such transient sounds, one will
find a fundamental difference with respect to sine-wave events. Spectra of long-lasting periodic
events were said to consist of discrete lines, each line representing one sine-wave component.
Spectra of short-lasting events arecontinuous,consisting of the frequencybandsof varying
widths. Mathematically, the two cases differ also from each other. With steady-state events, one
forms aFourier series,ie one considers one single period of an event that is understood never
to change and to last infinitely long. With transients, one forms aFourier integral, ie one
considers the event as a whole. The relation between time duration (delta tau) and frequency band
width (delta f) is given by the following equation:

Dt x Df = 1. (1)

In other words, the shorter the duration, the wider the band width, and vice versa. For a
hypothetical transient of zero duration, the band width would be unlimited. Figure 9 contains
some examples of transients. It shows that a short section of a sine wave does not actually have
a line spectrum; it has a composite band spectrum, and as its duration is increased, the
component around the nominal frequency, f0, gains more and more prominence. A true line
spectrum is not established until the duration becomes infinite. For this reason, the point was
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made repeatedly in the foregoing discussion that genuine sine-wave events are of very long
(theoretically, infinite) duration. Actually, the ear does not note any change in quality of a "tone"
once it is held longer than for a few seconds, a fact justifying the use of the word "sinusoidal
events".

It is noted that the two events - a pulse of zero duration, having an infinite band width,
and an infinitely long sine wave, having a band width of zero cycles - are reciprocally related
to each other, representing the two extremes of equation 5. What is the waveform of one case
represents the spectrum of the other.

In extreme cases (Fig. 9), transient signals may becomeaperiodic,that is, their waveform
does not even show a single zero crossing, as shown in the middle tracings of Figure 9, for
example. Such events are termedaperiodic,since there is no periodic repetition.

When a sinusoidal event is suddenly started or ended or even when only the amplitude
is stepped up or down from one level to another, one hears a click; that is to say, the sudden
change involved produces a transient. Once more, the longer the transient, ie the more gradually
one lets the change take place, the narrower is the bandwidth of the transient. It is this
relationship that makes it possible to eliminate the click as an audible signal. Band-width
elimination usually takes place at the expense of the high frequency portion of the band, and it
is in the higher frequencies (around 3000 Hz) that the human ear is most sensitive. Toward low
frequencies, its sensitivity falls off with about 12 dB/octave. Thus, increasing the duration of the
transient by letting the signal grow (or decline) gradually will shift its acoustic energy into the
low frequency region, making it essentially inaudible. For this reason, the ANSI standardized
audiometers specify the duration of signal onset ante decay (the signal envelope).

Acoustic transients produced during the onset or termination of tones have importance in
another respect. They are characteristics of different musical instruments. Earlier, the quality of
the tones produced was said to be different from instrument to instrument, and this quality was
said to depend upon the number, relative amplitude, and distribution of higher harmonics.
Actually, it turns out that the initial (or terminal) transients are even more important criteria for
telling one instrument apart from another when both of them are playing the same note.

Interestingly enough, when the initial transient was removed from the recording of notes
played by various instruments and the mutilated recording presented to a panel of musical
experts, they were unable to tell instruments apart, such as cello and a trumpet, which ordinarily
(ie when their transients are present) are easily distinguished. Another way of demonstrating the
importance of the initial transient is to listen to a tape recording of piano music while the tape
is being rewound. Piano notes, being produced by a mallet hitting a string, have strong initial
transients. When played backward, the tones cannot be recognized as those of a piano at all.

Noise. So far we have considered only single transients. The question is what type of
sound will be produced when such transients are repeated. There are two possibilities: (1) The
transients, eg pulses, are repeated in a periodic manner. In that case the spectrum is of the
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discrete line variety, having numerous harmonics. The repetition rate gives rise to the
fundamental. The output of the human larynx producing a sustained sound in the voiced mode
as was described earlier may serve as an example for this case. (2) The transients are repeated
in a random manner, ie their repetition rate, their duration, and their amplitude are completely
randomized. In that case, when there is no periodicity, the spectrum remains of the broad band
type, and what one hears is a "whooshing", noiselike sound. The hissing of steam and, above all,
the sound of jet engines are good examples. Because of their broad frequency content, the
analogy to white light has suggested the termwhite noise,an expression that has found wide
acceptance. Because of its ability to mask tones of any frequency, white noise is used in
audiometry for masking purposes. Actually, since it is only a narrow band of frequencies around
that of the test tone that is required for masking (the so-called critical band), more recently
narrow bands of white noise are being employed. The total energy the patient is exposed to
depends upon both amplitude and frequency band width. Thus, by limiting the band width the
patient is exposed to less sound energy and has a lesser overall loudness sensation.

Impedance

We have learned that free vibrations (and also maintained vibrations) are associated with
low damping and with narrow tuning; that is to say, devices such as tuning forks are capable of
vibrating only within a narrow range around their natural frequency. Forced vibrations for which
the frequency can be varied over a wider range (broad tuning) are associated with higher
damping (usually less than critical).

When a tuning fork is driven at its natural frequency (maintained vibrations), a minimal
effort is needed. In other words, the fork offers only a small "opposition" to such a driving
signal. However, if one tries to drive the same fort at a frequency that is only moderately
different from its natural one, the opposition to such an effort has risen very sharply. This
opposition, which is thus shown to be frequency dependent, is known as theimpedance (Z)or,
more specifically, the mechanical impedance (Zm) in the case under consideration.

Mechanical Impedance.Resistance, in the sense just described, is only one component
of the mechanical impedance. It is designated by the letterR, and its a frequency-dependent
entity. The other frequency-dependent component is known as thereactivecomponent and is
designated by the letterX. Like the natural frequency, it is determined by the elastic and inertial
properties of the vibrating structure. The elastic force was said to be proportional to acceleration.
Since these two factors are in phase opposition with respect to each other (see Fig. 7), their
resultant effect can be determined simply by forming their numerical difference. The total
reactance is thus either mass dominated (by convention then considered positive) or stiffness
dominated (then considered negative).

Once more, according to Figure 7, the phase relation between the two reactive factors
(corresponding to displacement and acceleration, respectively) and the resistance (corresponding
to velocity) is 90 degrees. Numerically such two components can be added byvectorial
summation,which for this special case follows the well-known theorem of Pythagoras, ie
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Z2 = R2 + X2. (6)

In the case of a simple vibrating system (for example, a tuning fork, in which all masses,
elastic components, and frictional factors may be conceptually lumped into one mass, etc, each)
the impedance (Zm) may be written in detail as follows:

Zm2 = R2 + (2 pi fM - (E/2 pi f)2 (7)

(f = frequency; M = mass; E = elasticity; R= resistance). As was the case with the
definition of the natural frequency (equation 4), it is seen that frequency is inversely related to
mass and directly to the elastic property, We now solve equation 7 for the case of the natural
frequency by substituting equation 4 into it and obtain:

Zm
2 = R2 + (M sq root (E/M) - E sqroot (M/E))2. (8)

The reactance part (X) of equation 8, after appropriate simplification, can be rewritten as:

X = sq root EM - sq root EM = 0. (9)

In other words, when the frequency is equal to the resonant frequency, the reactive
component becomes zero, and the impedance is determined solely by the resistive component.
This explains why tuning forks offer a minimal impedance when driven at their natural
frequency, as was stated previously.

It also follow from equation 7 that for all f > f0, the impedance increases with the mass
of the system as frequency goes higher; whereas for all f < f0, it increases with the elasticity as
frequency becomes lower. In other words, it is mass controlled above the natural frequency and
stiffness controlled below that point. In either case, it is always higher than that at the exact point
of resonance.

Tuning forks were said to be narrowly tuned, and this was found to be associated with
low damping. Inspection of equation 7 indicates that when the resistance R is small, the reactance
X becomes dominant, making the impedance Zm strongly dependent upon frequency f.

The way one assesses such a situation quantitatively is to determine, frequency by
frequency and for a constant input, the output of the system under consideration. The results are
then plotted as amplitude versus frequency. Figure 10 gives some examples of suchfrequency
response curves,as they are called. In particular, Figure 10 shows that when damping is low, the
system is very narrowly tuned. As damping is increased, the tuning becomes broader and broader.
Thereby, the resonant point moves slightly to the left, as was mentioned previously. When
damping is critical, the curve does not display a resonant point anymore, sloping gradually as
frequency goes higher. In the region of the former resonant point, it is already 6 dB down from
its initial value. The flattest curve (which is obviously the most desirable from the standpoint of
an optimal transducer) is reached when damping is somewhat less than critical, specifically at
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a logarithmic decrement of 3.14. Above the resonant point, all curves, regardless of damping,
slope down approximately with the square of frequency. This fact follows once more from
equation 7. When massM becomes dominant, and elasticityE can be neglected, the impedance
Z must vary withf2, resistanceR then being a constant for a given decrement. In order to have
a good high frequency response, one has to push the resonant point of a system as high as
possible, and this means low mass and relatively high stiffness.

The mechanical impedance may be defined as the complex ratio (complex because of the
phase relationship between the resistive and reactive components) between the effective force
acting upon a given area and the resulting linear velocity of displacement through that area. Its
unit is the mechanical ohm (dyne x sec x cm-1). The term "effective" in this context is the same
as the root-mean-square (RMS) value described previously.

Acoustic Impedance.So far we have considered only the mechanical impedance, which
manifests itself when a system is driven mechanically in some form or another. The situation is
slightly, but not principally, different when a system is considered that is driven acoustically or
has an acoustic output. In both of the latter cases, one can determine theacoustic impedance,
either "looking in" (system being driven) or "looking out" (system having an output). The unit
is the acoustic ohm (dyne x sec x cm-5). The exact definition is "the complex ratio between the
effective sound pressure averaged over the surface of the system to the effective volume velocity
through it".

The reason one may be interested in the outgoing (looking out) impedance lies in the
problem of impedance matchingwith the system the acoustic energy is being fed into (eg the
surrounding air). The problem of impedance matching will be discussed later.

Characteristic Impedance.There is a third kind of impedance that is exhibited by large
(theoretically unbounded) media, eg air or water. The mass of such large bodies is, at least
theoretically, infinitely large. Consequently, according to equation 4, their resonant frequency
must approach zero Hz; that is to say, this type of impedance, which is known as the
characteristic impedance,is frequency independent. The unit is the mechanical ohm/cm (dyne
x sec x cm-3). It is more simply determined as the product of the sound velocity (c) within the
particular medium (see later) and its density (ro),

Z = c x ro. (10)

The characteristic impedance of air is quite low. At 0°C and at barometric pressure of 760
mm Hg it is 42.86 ohms/cm, varying slightly with atmospheric pressure and with temperature.
At 20°C, it is approximately 41.5 ohms/cm. For water, the characteristic impedance is much
higher. At 25°C, it is 149,000 ohms/cm. In sea water (salinity of 3.6 per cent), also at 25°C, it
is 157,000 ohms/cm, the increase being due to the minerals in solutions. In solids, it reaches its
highest value. In saline, for example, it has a value of 4,570,000 ohms/cm. As its definition
(ohms/cm) implies, the total value of the characteristic impedance increases linearly with the
depth of penetration of the energy into a given medium.
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Sound Transmission

Before continuing our discussion on impedance and impedance matching, we must first
describe how sound is being transmitted within a given medium, especially through air. Consider
a loudspeaker diaphragm vibrating under the effect of an electrical signal applied to its voice coil.
The speaker will radiate energy into the surrounding air. The underlying mechanism is as follows:
as the speaker diaphragm moves out, it pushes the adjacent air particles forward, thus raising the
air pressure very slightly above its static value, typically one atmosphere. As the diaphragm
moves back again, and then beyond its resting position, it pulls the adjacent air particles with it,
thus creating an equally slight decrease of the air pressure. In other words, alternating
compressions and rarefactions of the surrounding air are being set up. These latter disturbances
do not stay put within a continuous medium but move away from their source. Let us for a
moment consider the speaker as a point-shaped source radiating in all directions, a hypothetical
case known as a "pulsating sphere". For such a case, the two-dimensional pattern created along
the surface of a large pond into which a stone has been dropped provides a good illusion.
Circular wave crests emerge from the site of excitation and, as they move outward away from
the source, their diameters continually increase with time and distance. Each crest is followed by
a trough and that, in turn, by another crest, and so forth, until eventually a whole system of
concentric crests and throughs is established, continually moving away from the source.

The speed of propagation of such a disturbance, the velocity of sound in our case, is
uniform and, as we have seen, a characteristic property of the medium in question. Incidentally,
this is not correct for surface waves on water; their speed of propagation increases with distance.

There is another difference between sound waves in air and other types, and that concerns
themodeof particle motion. We have seen that acoustic energy is propagated through air in the
form of alternating compressions and rarefactions. As schematically shown in Figure 11 (top),
these pressure changes take place in the same plane as that in which the waves are being
propagated. Therefore, this mode is known as alongitudinal form of particle motion. A
transversalmode (Fig. 11, bottom) is found in the propagation of light if one considers its wave
property. Polarization means to restrict the transversal motion to one particular plane.
Incidentally, surface waves on water move transversally and longitudinally at the same time, so-
called trochoidal wave motion. That means a particle, as it is bobbing up and down, is
simultaneously moving to and fro.

The parameters of Figure 11 are amplitude and distance, indicating that an event that is
sinusoidal in time (see Fig. 1) propagates also as a sinusoidal system of waves. The distance from
crest to crest, or from any other point to its nearest equivalent, is called awave-length.The
information conveyed by Figure 11, top and bottom, is essentially the same, except for the
difference in the mode of particle motion. For purposes of illustration, the transversal form (Fig.
11, bottom) is usually preferred both for temporal and spatial representation. It is more easily
drawn and recognized.
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Sound Velocity.The propagation velocity of sound can be measured. In air it is relatively
slow, varying somewhat with temperature. At 20°C (68°F) for example, it is 344 meters (1120
ft) per sec. Everyone has made the following observation: when watching a man from a distance
who is cutting a tree, onefirst seeshim swinging his ax and sometimelater hearsthe impact.
In water (fresh water of 30°C (68°F)), the velocity is higher (as was also the characteristic
impedance), namely 1493.2 m/sec (4554.3 ft/sec), that is, roughly four times the velocity in air.
In steel, it is about 16 times that in air, or four times that in water, namely, 5000 m/sec (16,200
ft/sec).

The following two statements are pertinent to the present problem: (1) When forced
vibrations are being propagated, their frequency remains constant; and (2) within a given medium
the wave propagation is independent of frequency. It follows from those two statements that in
a given situation the wavelength (lambda) must be in a reciprocal relation to the frequency (f)
with respect to the propagation velocity (c):

c = f x lambda (11)

In air, then, wavelengths of sound waves between 100 Hz and 10,000 Hz vary from 3.44
m (11.2 ft) to 3.44 cm (1.36 in). Compared with the wavelength of visible light (4000 to 8000
Å), the wavelength of sound waves is much larger because of the difference in propagation
velocity.

Inverse Square Law. The example of a stone being dropped into water may help to
illustrate another point. We may say that each crest carries a certain amount of energy away from
the source. Disregarding frictional losses for the time being, we see that this amount of energy
is spread thinner and thinner as the circumference of the crest increases with distance from its
source. It is recalled that intensity is a measure of "power density". Since the circumference of
a circle varies as the square of the radius, it follows that the"power density"must vary as the
square of the distance. Thissquare-of-the distance lawis a good approximation of the attenuation
of sound in afree field situation, ie, when there are no obstacles in the way of a propagating
sound wave. Even when the distribution is not strictly spherical, it still holds reasonably well.

Reflection of Sound, Diffraction, and Refraction.When the medium is not unbounded.
as would be the case in all real situations, the energy cannot be propagated away from its source
in an unlimited manner. For the time being we are still disregarding frictional losses. Sooner or
later it will meet an obstacle - a wall, for example. In such a case, some of the energy will be
bounced of the obstacle, ie, it will be reflected very much like a beam of light is reflected from
a given surface under comparable circumstances. Reflections of sound produces echos. The same
principles apply to acoustic as well as to optical reflections, ie, the angle of reflection must be
equal to the angle of incidence and so forth. Moreover, it is the ratio of the magnitude of the
surface roughness to the wavelength that determines whether the energy is reflected as a beam
or is scattered (ie diffracted). To be optically flat, a surface must be planed and polished to a
high degree of perfection. To be acoustically flat, tolerances can be less by many orders of
magnitude. On the other hand, it is the ratio of the size of the obstacle to the wavelength that
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determines whether all energy is reflected or some of it isrefractedaround the obstacle.

For visible light, obstacles that cause refractions are very small; for example, dust
particles suspended in the air. For sound, obstacles must be much larger to cause refractions.
Moreover, the range of wavelengths of audible sound (3.4 cm to 3.4 m for a range of 100 to
10.000 Hz; see above) is several orders of magnitude larger than that of visible light (4000 to
8000 Å), which represents only a range of a factor two. Consequently, for sound waves there
must be a pronounced frequency-dependent effect with respect to diffraction and refraction. Low
frequencies (long wavelengths) are more easily refracted, ie "heard around corners", than high
frequencies. The latter are reflected in toto and, hence, prevented from going around corners. In
general, it is the magnitude of the wavelengths of sound waves that causes refraction and
diffraction to such a degree that it is virtually impossible to "beam" sound, except at very high
frequencies.

Standing Waves.There is one special phenomenon we must mention. Whenever the path
lengths between the walls of a room, into which sound is being fed, are an integral multiple of
the wavelength, a sort of spatial resonance phenomenon is set up. The reflected sound returns in
a direction opposite to that of the incident sound. At a hard reflecting surface, the sound pressure
is maximal at the wall and changes phase abruptly by 180 degrees, so that the incident wave and
the reflected one are in phase opposition. This does not lead to a cancellation of amplitude as in
the time-domain situation of Figure 3, but to acancellation of wave travel.The result is a system
of so-calledstanding waves.For the sake of illustration, they can be easily reproduced in a
bathtub. At some point along their pathway the sound pressure changes with time from maximal
positive to maximal negative (this value being twice that of the incident wave alone) in a
sinusoidal fashion. The first such point is located directly at the wall. With distance from the
wall, these points alternate with others at which the pressure is held constant at its resting value.
The latter points are known as pressurenodesand the former as pressureantinodes.The particle
velocity is shifted by 180 degrees with respect to the pressure. That is, antinodes of sound
pressure correspond to nodes of velocity, and vice versa.

Standing waves are easily noticed in an enclosed room into which a high frequency sound
is being transmitted, for example, the 9 kHz interference tone produced by two radio stations on
adjacent frequency bands. On hearing such a tone one has only to move one's head slightly
(lambda = 3.8 cm; 1/2 lambda = 1.9 cm) in order to go from an antinode where the tone sounds
loud to a node where it may vanish altogether. Standing wave situations may also be used to tell
whether a given microphone responds to sound pressure or to its velocity. Both types are being
used. Such microphones will indicate in an opposite number, either directly on the wall (where
there is a velocity antinode) or at 1/2 lambda in front of it (where there is a pressure antinode).

Strange as it may sound, reflection (or formation of standing waves if conditions are right)
takes place not only when the walls are hard (eg when aerial sound hits the water surface), but
also when they are completely yielding (eg when sound propagating in water hits a water/air
boundary). In the latter case, there is a pressure node at the wall, ie a velocity antinode, the latter
changing phase by 180 degrees on reflection.
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In all other cases, when only some energy is being reflected and some is admitted into
the second medium,partial standing waves will develop.

Impedance Matching. The condition for reflection is given whenever there is a large
ratio between the impedances on both sides of the boundary, eg 41.5 ohms/cm to 149.000
ohms/cm for the case of an air-water boundary. The point must be made once more that it does
not matter whether the energy goes from the medium of the lower impedance to that of the
higher, or vice versa. A large impedance ratio, which is of course detrimental to the transmission
of sound energy from one medium to another (or from one structure to another), is referred to
as animpedance mismatch.One way of assessing the degree of impedance match or mismatch
is to measure the ratio of the incident energy to the reflected energy and their relative phase
angle. Especially when the impedance of one system is known, that of the other can be
determined in this fashion.Impedance bridgesthat are built upon this principle have been in use
for some time. One special, and quite useful, application is in the clinical assessment of the
impedance of the tympanic membrane.

One might think of compensating for the loss at the boundary by delivering a large
amount of energy to ensure that a sufficient amount is transmitted into the second medium in
spite of the high rate of rejection at the boundary. The example of the air/water boundary serves
to illustrate the futility of such an effort. In this particular case, approximately 0.1 per cent of the
incident energy is admitted into the second medium, while 99.9 per cent is being reflected. For
small mismatches, say of the order of 1:2 or 1:3, such strategy may be defensible, but with large
mismatches it is simply too wasteful to even be considered.

There is a better way, one that does not waste energy, ie, the use of animpedance-
matching transformer.Electrical power transformers that serve exactly the same purpose in
electrical or electronic circuits are well-known illustrations of this method of transferring power
in analogous situations. Mechanical and acoustic transformers are also used. The middle ear is
a good example of a mechanical transformer. Its operating principles rely upon simple leverage
systems.

Acoustic transformers are employed by musical instruments and also by loudspeakers. The
horn of a trumpet is an impedance-matching device from the mouth-piece (high impedance) to
the surrounding air (low impedance). Here, the matching is achieved by the gradually increasing
inner diameter of the horn, which flares out in an exponential fashion, that is, an increasingly
wider volume of air is being driven as distance increases in the mouth of the horn. Megaphones,
bullhorns, and horn-type loudspeakers apply the same principles. A man cupping his hands in
front of his mouth improves the transmission of his voice in the same manner.

Acoustic Radiation Patterns.An acoustic horn may achieve an efficient power transfer
from a loudspeaker into the surrounding air. Yet most conventional loudspeakers create a "hole-
in-the-wall" effect from which the sound appears to emanate. To make matters worse, speakers
do not radiate all frequencies evenly in all directions. As long as the wavelength is large
compared to the diameter of the speaker, the radiated pattern is evenly distributed as a result of



20

the phenomenon of refraction (see earlier discussion). As this ratio becomes smaller with
increasing frequency, the pattern becomes gradually pointed like a beam. In addition, side lobes
begin to form so that a listener moving perpendicularly to the speaker's axis goes repeatedly from
maximum to minimum, back to a maximum, and so forth. For the same reason, a complex tone
sounds different from different listening angles. One way to overcome this deficiency is to mount
smallerhigh frequency tweeters"co-axially" into the largerwoofer.The woofer then produces
a broad low frequency radiation and the tweeter (or tweeters) does the same for the high
frequencies.

There is another point we must consider. Loudspeakers have definite low frequency
limitations. With respect to the power radiated by them, we are concerned only with theresistive
components of their impedances. It is only in resistive elements that power is dissipated, ie, in
the form of heat. When one starts out at a high frequency (although at one below the resonant
point) and goes down in frequency, the resistive component of the output impedance of a given
speaker is reasonably flat down to a point that is determined by the ratio of wavelength to the
circumference of the speaker (lambda/2 pi R). At this point, it drops precipitously, ie, with the
square of inverse frequency (12 dB/oct).

The so-calledreciprocity theoremof Helmholtz states that mechano-acoustic and other
similar events, in which no power is permanently lost, ie, dissipated, may also occur in a
reversedmanner. Loudspeakers can act as microphones, for example. From this viewpoint the
consideration concerning loudspeakers has importance for the case of the tympanic membrane,
which receives acoustic power to transmit it to the inner ear. As with the power radiated off by
loudspeakers, and essentially for the same reason, the power admitted by the tympanic membrane
becomes less with inverse frequency below a cut-off frequency of approximately 2000 Hz, a
phenomenon that accounts for the well-known low frequency attenuation of the threshold curve
of hearing. This fact is not at all obvious when one neglects power considerations, ie, when one
treats the ear as if it were simply a microphone that does not consume power. As was briefly
mentioned in the introduction, microphones are analogous to voltmeters in electrical circuits.
Neither of them must disturb the existing situation by drawing power. They measure sound
pressure (microphone) or voltage (voltmeters), respectively. Sound pressures and voltages are
analogous to each other.

Displacement Pattern of Vibrating Membranes.There is one additional point we must
discuss with respect to vibrating membranes such as the tympanic membrane. For an example
we shall consider the flat circular diaphragm of a magnetic earphone, the reason being that this
is the only type of membrane that has been studied in sufficient detail both mathematically and
experimentally. The membrane shall be assumed to be clamped around its edge. As long as f≤
fo, the membrane will vibrate as a whole, bulging, of course, at its center.

Beyond their first resonant points, such systems usually display a number of additional
resonant points. At the first additional one, the membrane ceases to vibrate as a whole, moving
instead in opposite phases on its right and left, as shown in Figure 12. The membrane is said to
have changed itsmodeof vibrations, this particular one being the firstradial mode. As further
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shown in Figure 12, there are a large number of higher modes, some radial, some circular, and
some combinations of these two. Figure 12 is by no means exhaustive in this respect. It is
evident, then, that when the membrane ceases to operate as a whole, its efficiency must drop.
This is especially true for the radial modes. As a matter of fact, the resonance points for radial
modes are typically very small, those of the first mode and of the second circular one being
usually the highest. This is an additional reason for the fact that the efficiency of a membrane
when acting as a radiator of a sound or as a receiver must drop beyond its first resonance point.
Principally, the same considerations apply to the tympanic membrane.

Distortion: Amplitude Distortion

It was mentioned in the section on generation of sound that the elastic restoring force is
proportional to the displacement only as long as displacement amplitudes are relatively small. If
such limits are exceeded (limits that will, of course, differ from system to system), the linear
relation between the applied force and the resulting displacement will no longer be maintained.
This is equally true for unidirectional (DC) as well as alternating (AC) forces. Figure 13 shows
what is known as aninput/output functionof a typical case. Both axes are given in dB. It is seen
that at higher driving amplitudes the output increases at a lesser rate than the input until it finally
becomes independent of the input, ie, it becomes flat. Thus, the function, which was originally
linear, eventually becomesnonlinear.Since the result is adistorted waveform(as will be shown
presently), the process is also known as distortion or, more exactly,nonlinear distortion.The
particular kind described here is known as anamplitude distortionbecause of the dependence
upon signal amplitude. Distortion in thefrequencyand time domains (ie frequency and phase
distortion as well as "hangover" effects) will be discussed later.

Harmonic Distortion. Suppose the input has a simple sinusoidal waveform. After the
limits of linearity are exceeded, the output waveform may become "distorted", as shown in the
examples of Figure 14. While in Figure 14 A there are only two little wiggles opposite each other
along either slope, in B the peaks on either side of the waveform are clipped off, so-called
bilateral peak clipping.In C, the peak clipping occurs only unilaterally in addition to further
alterations of the waveform. Peak clipping means, of course, a definite limit of displacement
amplitudes. In Figure 13, bilateral peak clipping would occur in the flat portion of the
input/output function. Unilateral peak clipping is seen when the displacement is limited in one
direction long before the other one becomes affected. In a badly designed loudspeaker, for
example, the voice coil may hit the bottom of the slot it is moving in but may still have leeway
in the opposite direction.

We already know what a distorted waveform means. When it is analyzed according to the
Fourier theorem, it will reveal the presence ofhigher harmonics that were not part of the original
signal.For this reason, amplitude distortion is also known asharmonic distortion.For example,
the two wiggles opposing each other in waveform A of Figure 14 indicate a relatively strong
third harmonic. Needless to say, the situation becomes more complex as the driving amplitude
gets higher.
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Intermodulation Distortion. An additional form of distortion is observed in nonlinear
systems. Ordinarily, one can feed any two sinusoidal signals into a linear system, and the
resultant is simply a linear superposition of the two, ie, the sum of the amplitudes of both
systems at any instant of time, in the manner of Figures 3 and 4. An analysis reveals nothing but
two original signals. In contrast, when fed into a nonlinear system, the two signals interact, that
is, the lower signalmodulatesthe higher one in a way similar to the way a program signal
modulates the carrier signal of an AM radio station. In this latter case, new frequencies are
created, the so-calledcombination tones:the sums and differences between the primaries (first
order combination tones) but also second order sums and differences. Let the primary frequencies
be 300 and 1000 Hz. The first order sum and differences are 1000± 300 = 1300 Hz and 700 Hz.
Second order combinations are 1300 + 300 = 1600 Hz; 700 - 300 = 400 Hz; and so forth. There
is no limit to such a process, although the relative magnitude of these distortion products
decreases rapidly with rank order. This type of distortion, which has basically the same cause as
harmonic distortion, is calledintermodulation distortion.

It cannot be emphasized enough that any system will eventually show distortion after
certain limits are exceeded. Commercial power amplifiers, for example, are rated in watts, that
is, the amount of power they are capable of dissipating. It is customary to list the magnitude of
distortion occurring at the level of maximal power rating. The result can be conveniently
expressed as the percentage energy of the original signal that goes into the production of higher
harmonics or, similarly, as per cent intermodulation distortion.

One can, of course, hear the results of either form of distortion. Most people when
listening to running speech or music find any distortion exceeding 1 to 3 per cent very
objectionable. The ear is quite sensitive in this respect, a fact that is somewhat strange since the
ear has a low threshold of distortion of its own.

Distortions in the frequency and time domains are a different matter.

Frequency Distortion

Actually we have already touched upon frequency distortion without mentioning it by
name. Whenever a receiving system has a usable frequency range (given by its frequency
response curve as defined earlier) that is narrower than the range of signals it is supposed to
transmit we call thisfrequency distortion.AM radio stations with their 9-kHz band width
"distort" music by cutting off its high frequency components. Hearing aid earphones also have
a limited frequency range. There are many more examples of this kind. An ideal system for good
reproduction of sound should have at least a flat frequency response from 20 to 20.000 Hz. The
significance of the higher frequencies lies not so much in the reproduction of high frequency
tones (there are no musical tones that reach that high) but in the correct reproduction of fast
transients that require wide frequency bands (see earlier discussion). It is for this reason that
piano music is difficult to reproduce in good quality in any but the best systems.
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Distortions in the Time Domain

Phase Distortion.Phase distortion is actually a corollary of frequency distortion. In other
words, a band-width-limited system cannot reproduce complex signals with the same
intercomponent phase relationship they originally had. Throughout the frequency range of such
band-limited systems, phase change continually. The reason for this will be discussed later in the
section on filtering of sound. Formerly the ear was thought to be insensitive to phase distortion.
This erroneous conclusion was based upon a misinterpretation by other writers of one of
Helmholtz's original experiments. A change in phase relationship between components of a
complex signal affects the waveform (see Fig. 5), and the ear is indeed sensitive to such changes,
a fact that was well known to Helmoholtz.

Hangover Effects.In systems that have insufficient damping, each signal is followed by
some free vibrations, an effect that lends a "mushy" sound to reproduced speech. Since these
hangover effects may interfere with subsequent signals, intelligibility must decrease. Most poor
quality systems suffer from this kind of distortion to varying degrees.

Noise Interference.There is no system in which signals are transmitted that does not
havesome noise,either from internal or external sources, although the noise may be quite low
with respect to the magnitude of the signal. Since there is interest only in the relative amount of
noise, one defines thesignal-to-noise ration.In fact, a branch of psychophysics calledsignal
detection theoryconsiders the signal S/N ration one of the most important determinants of the
detection of auditory signals by listeners. However, noise must not necessarily be equated with
"distortion". It exists in linear systems as well, and then its effect is a mereinterference,ie, the
noise is superimposed upon the signal. Psychophysically the result is masking, which will not be
discussed further in this chapter. If, on the other hand, the system acts nonlinearly,
intermodulation distortion occurs, and the results may be very detrimental to the perception of
the signal. Cheap tube-type radios with an audible 60-Hz power line hum often show
intermodulation distortion between the hum and the signal, especially when the signal is weak
and requires a large amount of amplification. In that case, of course, such a radio distorts.

Filtering of Sound

A limitation of frequency band width can be introduced deliberately in a process that by
analogy (sorting out of particles beyond a given size) is calledfiltering. There arelow-pass
filters, high-passfilters, band-passfilters, andband-rejectionfilters. Filters, depending upon their
construction, attenuate frequencies outside their pathband to varying degrees. Very simple filters
may only attenuate 6 dB/oct, whereas very sharp filters attenuate 30 to 40 dB/oct and more.
Although with today's instrumentation it is easier to convert acoustic signals first into electrical
ones and then use electric or electronic filters, mechano-acoustic filters are still in use.

Let us consider one common example each of low-pass and high-pass filters and, finally,
a variable filter, the upper respiratory tract.
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Low-Pass Filter. A car muffler is designed as a low-pass filter. Since the ear is more
sensitive to high frequencies (peak sensitivity around 3 kHz) than to low ones, shifting the energy
into the low frequency band must reduce the apparent loudness of the exhaust noise. Practically,
this filter effect is achieved by having a large number of small, completely closed side chambers
along the main duct. These side chambers act like springs, cushioning the sharp impact of the
exhaust pulses, that is, limiting their high frequency content.

It may be added here that all transmission systems are essentially low-pass filters. High
frequency energy is lost as a result of absorption and scattering, and low frequency energy is
transmitted farther.

High-Pass Filter.Suppose one is listening via the telephone to somebody talking. As long
as there is good contact between one's ear and the receiver, the voice quality is good. However,
if one moves the receiver only slightly away, thus breaking its seal with the ear, the speaker's
voice becomes "tinny". It is lacking in low frequency components. One has produced a high-pass
filter effect. The explanation is as follows: at the leak the line is "loaded" with masses, ie, the
volumes of air that must be moved to and fro through such leaks as the pressure changes when
the signal is passing along the line. Mass effects, as we recall, always affect the high frequencies.
The cut-off point of such a high-pass filter system is determined by the size of the holes. The
resistance to sound varies with particle velocity. Thus, high frequencies are more easily dissipated
than low frequencies.

Filter Properties of the Upper Respiratory Tract. The steady-state output of the larynx
was said to be either a noise (whispered voice) or a periodic pulse (normal voice). First of all,
this generator can be switched on and off, and such switching can be accomplished in a sudden
manner (vocal attack) or in a more gradual manner (breathy attack). Thus, the initial and terminal
transients can be manipulated. But then the output of a human larynx does not sound very
pleasant. It sounds rough, ie, highly distorted, which is not surprising in view of its waveform.
As a matter of fact, it does not sound like the voice of a human being at all. What determines
the final sound quality is the action of the upper respiratory tract, which, from the acoustic
standpoint, may be considered a variable set of filters, mainly of the low-pass and band-pass
types. The nasopharynx, for example (a side chamber) serves for low-pass filtering. The mouth,
being in essence a resonating cavity in a series, represents a band-pass filter. The cut-off
frequencies of both of them can be varied over a fairly wide range simply by changing the
enclosed air volume. In addition, changes in the widths of the passages, mainly the throat and
the mouth, affect the damping properties as a narrow channel increases the resistance to the
passing air stream. This, in turn, affects the slopes of the filters.

The mouth especially, by virtue of the great mobility of the tongue and lips, can change
its filter properties in a rapid manner and to an almost unlimited degree, allowing the generation
of a great variety of speech sounds. This includes the production of transients as in plosive
consonants.
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The way the upper respiratory tract affects the laryngeal output is by favoring some
frequency bands and attenuating others as a result of its filter properties at a given time. This is
what makes the voice of a trained speaker or singer pleasant sounding. In this latter respect, the
lower respiratory tract also has its effect. The upper and lower tracts and the larynx form what
is known as a coupled system in which one part affects the performance of the others.

This brief account of voice production is by no means exhaustive and is given here only
as an illustrative example.

Phase Effects of Filters.Filters not only affect the frequency response but shift the
phase/frequency as well. It is for this reason that frequency distortion is invariably accompanied
by phase distortion as was outlined previously.

In transmission lines, which in general act like low-pass filters, the inherent phase
distortion produces another effect. The transmission velocity decreases with frequency so that the
high frequency components of a complex signal arrive at the terminal noticeably later than the
low frequencies. Before it was learned how too compensate for this occurrence (simply by
delaying the low frequencies proportionally), this phenomenon was the source of the so-called
"birdies" heard in long-distance telephone lines, that is, high frequency signals that had become
entirely separated from their original signals.

Magnitude Considerations

In the discussion of the dB concept, the reference levels for sound measurements, 10-10

microwatts/cm2 or 0.0002 dyne/cm2, were cited (1 dyne/cm2 = 1 microbar = 0.001 millibar, the
unit in which barometric pressure is measured). The reader has perhaps wondered about their
small magnitudes; 10-10, after all, is 1/10 of 1/1,000,000,000! These values were originally chosen
because they are reasonably close to sound intensity and pressure, respectively, at the hearing
threshold of a human ear at 1000 Hz. Actually, at the time the agreement was made, it was
thought that they represented this threshold accurately. The level of conversational voice in an
enclosed room is approximately 60 dB SPL (sound pressure level); this is still only 10-4

microwatts/cm2 or 0.2 dyne/cm2 (0.2 mbar is less than a barometer is capable of indicating). One
hundred-twenty decibels is a noise level that may already be considered as fairly high; but it is
a mere 100 microwatts/cm2 or 200 dynes/cm2. These two examples may suffice to show that the
power and pressures involved in acoustics are quite small compared to those involved in other
fields, such as electricity, mechanics (automotive power), and others. By the same token, they
indicate that the ear is an extremely sensitive detector of sound. The displacement amplitudes of
structures in the ear, such as the tympanic membrane, the stapes, and the basilar membrane, are
submicroscopic even at fairly high sound pressure levels.


